2Sum and 3Sum Problems

May 16, 2019

2Sum problems

Given an array A[l---n| of integers and integer m, find if there are indices i and j (not
necessarily distinct!) such that A[i] + A[j] = m.

3Sum problems

Given an array A[l---n] of integers and integer m, find if there are indices i, j and k
(not necessarily distinct!) such that A[i] + A[j] + A[k] = 0.

Let us focus on the 2Sum Problem first. We can solve 3Sum problem by applying the
algorithm of 2Sum.

First Solution for 2Sum:

Algorithm 1 Simple solution
1: fort=1 to ndo

2: for j =1 to ndo

3: if A[i] + A[j] = m then
4: return true

5: end if

6: end for

7. end for

8: return false

Analyze this is ©(n?), it computes all the possible solution naively.

Second Solution for 2Sum:
Consider we do some work to the array.
Sorting the entire array is really helpful!

Algorithm 2 pre-sorting solution
1: SOI‘t(A)

2: fori=1 to ndo

3: j = BinarySearch(m-Al[i],A)
4: if 7 > 0 then

5: return true
6
7
8

end if
. end for
. return false

Simply time analysis:

Consider Sort(A), we can use merge sort whose complexity is ©(nlog(n))

For loop goes through the entire array that is ©(n), one BinarySearch takes ©log(n)
Therefore the complexity of this algorithm is ©(nlog(n))

Third Solution for 2Sum:
Consider the array is pre-sorted by using merge sort. We can do better in the second part.

Algorithm 3 Fastest solution
Li=153=n
2: while i < j do

3. if A[i] + A[j] = m then
4: return true

5. else

6: if A[i] + A[j] < m then
7: 1=1+1

8: else

9: j=7+1

10: end if

11: end if

12: end while
13: return false

Explanation:

This algorithm needs a little bit creativity.

We set ¢ to be the index of the beginning of array and j to be the index of the end of array.
Since the entire array has been pre-sorted, therefore we know that if the number we compute
from A[i] and A[j] is less than m, we know that we need to increment ¢ so that we can get
a larger result. Vice versa (decrement j)

Solutions for 3Sum:

Solution 1:
Similar to 2Sum, we can compute the entire array by using three nested loops to check each
triplet that is ©(n?)

Solution 2:

For each value of k, use the 2Sum second solution to find i, j Ali] + Alj] = —A[k]

Since the k needs to go through the entire array which is ©(n) and each time it runs the
second solution for 2Sum that is ©(nlogn), therefore the total complexity is ©(n?(logn)).

Solution 3:
In the second solution for 3Sum, we sort the array n times, which is not efficient.
So we pre-sort the array before executing the program.

Solution 4:
The fourth algorithm is basically replace the loop by using third solution for 2Sum problem.
However this time it makes a great change!

Algorithm 4 Faster solution for 3Sum
1: Sort(A)

2: fori=1 to ndo
3 x = Sorted2Sum(A, -A[k])
4 if x then

5: return true

6

7

8

end if
. end for
. return false

Analysis:

Consider sort array A, we apply merge sort so that it takes ©(nlogn)

Since the loop in the third solution for 2Sum only takes ©(n), since it goes the array only
once.

Therefore we have ©(n*) complexity as k has to goes through the entire array as well.

