
2Sum and 3Sum Problems

May 16, 2019

2Sum problems

Given an array A[1 · · ·n] of integers and integer m, find if there are indices i and j (not
necessarily distinct!) such that A[i] + A[j] = m.

3Sum problems

Given an array A[1 · · ·n] of integers and integer m, find if there are indices i, j and k
(not necessarily distinct!) such that A[i] + A[j] + A[k] = 0.

Let us focus on the 2Sum Problem first. We can solve 3Sum problem by applying the
algorithm of 2Sum.

First Solution for 2Sum:

Algorithm 1 Simple solution

1: for i = 1 to n do
2: for j = i to n do
3: if A[i] + A[j] = m then
4: return true
5: end if
6: end for
7: end for
8: return false

Analyze this is Θ(n2), it computes all the possible solution naively.

1



Second Solution for 2Sum:
Consider we do some work to the array.
Sorting the entire array is really helpful!

Algorithm 2 pre-sorting solution

1: Sort(A)
2: for i = 1 to n do
3: j = BinarySearch(m-A[i],A)
4: if j > 0 then
5: return true
6: end if
7: end for
8: return false

Simply time analysis:
Consider Sort(A), we can use merge sort whose complexity is Θ(nlog(n))
For loop goes through the entire array that is Θ(n), one BinarySearch takes Θlog(n)
Therefore the complexity of this algorithm is Θ(nlog(n))

Third Solution for 2Sum:
Consider the array is pre-sorted by using merge sort. We can do better in the second part.

Algorithm 3 Fastest solution
1: i = 1; j = n
2: while i ≤ j do
3: if A[i] + A[j] = m then
4: return true
5: else
6: if A[i] + A[j] < m then
7: i = i + 1
8: else
9: j = j + 1
10: end if
11: end if
12: end while
13: return false

Explanation:
This algorithm needs a little bit creativity.
We set i to be the index of the beginning of array and j to be the index of the end of array.
Since the entire array has been pre-sorted, therefore we know that if the number we compute
from A[i] and A[j] is less than m, we know that we need to increment i so that we can get
a larger result. Vice versa (decrement j)

2



Solutions for 3Sum:

Solution 1:
Similar to 2Sum, we can compute the entire array by using three nested loops to check each
triplet that is Θ(n3)

Solution 2:
For each value of k, use the 2Sum second solution to find i, j A[i] + A[j] = −A[k]
Since the k needs to go through the entire array which is Θ(n) and each time it runs the
second solution for 2Sum that is Θ(nlogn), therefore the total complexity is Θ(n2(logn)).

Solution 3:
In the second solution for 3Sum, we sort the array n times, which is not efficient.
So we pre-sort the array before executing the program.

Solution 4:
The fourth algorithm is basically replace the loop by using third solution for 2Sum problem.
However this time it makes a great change!

Algorithm 4 Faster solution for 3Sum

1: Sort(A)
2: for i = 1 to n do
3: x = Sorted2Sum(A, -A[k])

4: if x then
5: return true
6: end if
7: end for
8: return false

Analysis:
Consider sort array A, we apply merge sort so that it takes Θ(nlogn)
Since the loop in the third solution for 2Sum only takes Θ(n), since it goes the array only
once.
Therefore we have Θ(n2) complexity as k has to goes through the entire array as well.

3


